
yt SVR Algorithm Handover Package
Chris Gyurgyik, Ariel Kellison, and Youhan Yuan

GitHub Repository
www.github.com/spherical-volume-rendering/svr-algorithm

-Introduction-

This document provides the details of the algorithm for spherical voxel traversal
developed and implemented by Chris Gyurgyik, Ariel Kellison, and Youhan Yuan for the
yt open source visualization package. The first part of the document provides informal
pseudocode for the algorithm. This is followed by descriptions of the implementation
API, the testing methodology with a prototypical example, and benchmarking results.

https://github.com/spherical-volume-rendering/svr-algorithm

-Algorithm-

The spherical coordinate traversal for ray tracing algorithm developed for integration
into the yt package consists of two main phases: initialization and traversal. An outline
of the algorithm and relevant theorems is provided below.

Figure 1. A spherical voxel is outlined in
red. The values and are the polar𝑑θ 𝑑ϕ
and spherical measurements of the voxel;
the radial measure of the voxel is the
difference between the two spherical
shells bounding the voxel (the inner shell
is shaded in red) .1

Spherical Voxel Traversal Algorithm

Givens: the number of spherical shells , the number of polar sections , the number of𝑁(𝑟) 𝑁(θ)
azimuthal sections , the ray origin and direction, the initial traversal time , the maximum𝑁(θ) 𝑡

0

traversal time , the maximum sphere radius , and the center of the sphere.𝑡
𝑒𝑛𝑑

𝑟
𝑚𝑎𝑥

Initialization

1. Determine if the ray intersects the coordinate grid (c.f. [1]).
2. Determine the initial radial voxel by comparing the radial coordinate of the ray at time 𝑡

0

to the radius of each spherical shell:
for each spherical shell for do𝑟

𝑖
𝑖 = 𝑁(𝑟), … , 1

if the radial coordinate of the ray at time is less than the radius of then𝑡
0

𝑟
𝑖

1The image was generated following the outline of
tex.stackexchange.com/questions/159445/draw-in-cylindrical-and-spherical-coordinates.

set the initial radial voxel to 𝑟
𝑖

end

3. For each angular coordinate (ϴ, ϕ), use the given total number of angular sections
(,) to find the totally ordered set S of points marking the angular voxel𝑁(θ) 𝑁(ϕ)
boundaries from to along the radius of the maximum spherical shell.0 2π

4. Determine the initial angular voxels using Theorem 2:
for each angular coordinate ϴ, ϕ do

Step 1. Find the vector between the ray location at and the grid center𝑢 𝑡
0

Step 2. Find the point of intersection between and the radius of the maximum𝑝 𝑢
spherical shell, .𝑟

𝑚𝑎𝑥

Step 3. Determine the angular voxel containing :𝑝
for each consecutive pair of points 𝑠

1
, 𝑠

2
 ∈ 𝑆

Determine if lies in the angular voxel determined by and𝑝 𝑠
1

𝑠
2

using Theorem 2.
end

end

Figure 2 : Step 4 of initialization stage.

Traversal

while the current time is less than do𝑡
𝑒𝑛𝑑

1. Find the time of intersection between the ray and the boundaries of the current radial
voxel; determine whether to increment or decrement the radial voxel ID:

Step 1. Determine the time of intersection with each of the radial voxel boundaries, 𝑟
1

and (the algorithm described in [1] is sufficient). Only one of these intersection times𝑟
2

will be less than the current time; set to this value.𝑡𝑀𝑎𝑥
𝑟

Step 2. If , the radial voxel ID should be decremented: set . If𝑟
1

< 𝑟
2

𝑡𝑆𝑡𝑒𝑝
𝑟

= − 1

the radial voxel ID should be incremented: set . If , the ray is𝑟
2

< 𝑟
1 ,

𝑡𝑆𝑡𝑒𝑝
𝑟

= 1 𝑟
2

= 𝑟
1

in the innermost radial voxel and the voxel ID should remain unchanged.

2. Find the time of intersection between the ray and the boundaries of the current angular
(azimuthal and polar) voxel; determine whether to increment or decrement the angular
voxel ID:

for each angular coordinate ϴ, ϕ do
Create the vectors and between the origin of the grid, ,𝑂𝑠

𝑚𝑖𝑛
𝑂𝑠

𝑚𝑎𝑥
𝑂

and the boundary points of the current angular voxel. If the𝑠
𝑚𝑖𝑛

, 𝑠
𝑚𝑎𝑥

∈ 𝑆

ray intersects then set (indicating that that the𝑂𝑠
𝑚𝑖𝑛

𝑡𝑆𝑡𝑒𝑝
𝑎𝑛𝑔

= − 1

current angular voxel ID should be decremented), if the ray intersects
set ; set () to the 𝑂𝑠

𝑚𝑎𝑥
𝑡𝑆𝑡𝑒𝑝

𝑎𝑛𝑔
= 1 𝑡𝑀𝑎𝑥

𝑎𝑛𝑔
𝑡𝑀𝑎𝑥

𝑎𝑛𝑔
= 𝑡𝑀𝑎𝑥

θ
 𝑜𝑟 𝑡𝑀𝑎𝑥

ϕ

corresponding intersection time. If no intersection occurs, the ray never
leaves the current angular voxel during the grid traversal; the voxel ID
remains unchanged and .𝑡𝑀𝑎𝑥

𝑎𝑛𝑔
 = 𝑡

𝑒𝑛𝑑

end

3. Compare . Set the current time to the minimum of these values.𝑡𝑀𝑎𝑥
θ
 , 𝑡𝑀𝑎𝑥

ϕ
, 𝑡𝑀𝑎𝑥

𝑟

Update the voxel ID of the coordinate with minimum intersection time using the relevant
.𝑡𝑆𝑡𝑒𝑝

Theorem 2. (Points on minor arc) The point P lies on
the minor arc between two points A and B on circle C
with center O iff the angle APB is obtuse.∡

Proof (Theorem 2): The proof follows from the
inscribed angle theorem: an angle θ inscribed in a
circle is half of the central angle that subtends the
same arc on the circle. For, if is the arc on𝐿

https://en.wikipedia.org/wiki/Subtended_arc
https://en.wikipedia.org/wiki/Arc_(geometry)

C containing P, and is the arc on C that does not contain P, then the central angle that𝑄 ϕ
subtends is twice the inscribed obtuse angle APB and is therefore a reflex angle; the arc on𝑄 ∡ 𝐿
the circle C with center O is therefore minor. See Figure 3.

Figure 3: Theorem 2.

-API-

Requirements

Listed below are the build requirements to run Cython_SVR.walk_spherical_volume. All
of these are already used in the yt library, and therefore will not cause issues during the
integration phase.
- Python3
- Cython
- Numpy
- distutils
Currently, before use of the algorithm, the code must be compiled and linked on your
machine:

> python3 cython_SVR_setup.py build_ext --inplace

The cythonized version of the algorithm is contained in a function named
walk_spherical_volume with the inputs and return type listed in the tables below. Here,
np is an alias for the Python package Numpy.

Input Arguments

Input Value Name Type Functionality Notes

ray_origin np.ndarray
[np.float64_t,
ndim=1,
mode="c",
size = 3]

The origin of the ray. The origin of the ray may be inside or
outside the sphere.

ray_direction np.ndarray
[np.float64_t,
ndim=1,
mode="c",
size = 3]

The direction of the ray. The ray is not assumed to be
normalized. Therefore, during one unit of
time, the ray will travel one iteration of
the vector ray_direction.

https://www.python.org/
https://cython.org/
https://numpy.org/
https://docs.python.org/3/library/distutils.html

min_bound np.ndarray
[np.float64_t,
ndim=1,
mode="c",
size = 3]

The minimum bound in the form
(radial, polar, azimuthal).

It should hold that each value of the
minimum bound is strictly less than each
value of the maximum bound.

max_bound np.ndarray
[np.float64_t,
ndim=1,
mode="c",
size = 3]

The maximum bound in the form
(radial, polar, azimuthal). The

is used to determine𝑚𝑎𝑥
𝑟𝑎𝑑𝑖𝑎𝑙

the sphere’s maximum radius.
These bounds are also used to
traverse over a sector of the
sphere.

Example: If one wants to travel over only
the upper hemisphere, then:

and𝑚𝑖𝑛
𝑏𝑜𝑢𝑛𝑑

= [0, 0, 0]

𝑚𝑎𝑥
𝑏𝑜𝑢𝑛𝑑

= [𝑟𝑎𝑑𝑖𝑢𝑠
𝑚𝑎𝑥

, 2 * π, 2

num_radial_sections int The number of radial sections
used to determine the voxel
division of the sphere.

To determine the delta radius, one can
use the following formula:

(𝑚𝑎𝑥
𝑟𝑎𝑑𝑖𝑢𝑠

− 𝑚𝑖𝑛
𝑟𝑎𝑑𝑖𝑢𝑠

)

 𝑁
𝑟𝑎𝑑𝑖𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠

num_polar_sections int The number of polar sections
used to determine the voxel
division of the sphere.

To determine the delta polar value, one
can use the following formula:

(𝑚𝑎𝑥
𝑝𝑜𝑙𝑎𝑟

− 𝑚𝑖𝑛
𝑝𝑜𝑙𝑎𝑟

)

𝑁
𝑝𝑜𝑙𝑎𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠

num_azimuthal_sections int The number of azimuthal
sections used to determine the
voxel division of the sphere.

To determine the delta azimuthal value,
one can use the following formula:

(𝑚𝑎𝑥
𝑎𝑧𝑖𝑚𝑢𝑡ℎ𝑎𝑙

− 𝑚𝑖𝑛
𝑎𝑧𝑖𝑚𝑢𝑡ℎ𝑎𝑙

)

𝑁
𝑎𝑧𝑖𝑚𝑢𝑡ℎ𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠

sphere_center np.ndarray
[np.float64_t,
ndim=1,
mode="c",
size = 3]

The center of the sphere. N/A

t_begin np.float64_t The beginning time of the ray
traversal.

The time is not normalized; this is
different than how yt currently
implements walk_volume.

t_end np.float64_t The end time of the ray
traversal.

The traversal will continue until either
t_end is reached or it has exited the
spherical volume.

Return Value

Return Value Type Functionality Notes

np.ndarray
[dtype=int,
ndim=3,
size = N]

A Numpy array of the spherical voxel
coordinates. The voxel coordinates
are as follows:
For coordinate i in numpy array v:
v[i, 0] = radial_voxel
v[i, 1] = polar_voxel
v[i, 2] = azimuthal_voxel

The size N is dependent on the number of
voxels traversed. Transitions can be made for
one, two, or all three voxel types. In other
words, the following are all possible:
{1, 1, 1} ⇒ {2, 1, 1}
{1, 1, 1} ⇒ {2, 2, 1}
{1, 1 , 1} ⇒ {2, 2, 2}

Example

Example of the spherical voxel traversal algorithm.

Compile code before use:

python3 cython_SVR_setup.py build_ext --inplace

import cython_SVR

import numpy as np

ray_origin = np.array([-13.0, -13.0, -13.0])

ray_direction = np.array([1.0, 1.0, 1.0])

sphere_center = np.array([0.0, 0.0, 0.0])

sphere_max_radius = 10.0

num_radial_sections = 4

num_polar_sections = 4

num_azimuthal_sections = 4

min_bound = np.array([0.0, 0.0, 0.0])

max_bound = np.array([sphere_max_radius, 2 * np.pi, 2 * np.pi])

t_begin = 0.0

t_end = 30.0

voxels = cython_SVR.walk_spherical_volume(ray_origin, ray_direction, min_bound,

max_bound, num_radial_sections,

num_polar_sections,

num_azimuthal_sections, sphere_center,

sphere_max_radius, t_begin, t_end)

Expected voxels: [[1, 2, 2], [2, 2, 2], [3, 2, 2], [4, 2, 2],

[4, 0, 0], [3, 0, 0], [2, 0, 0], [1, 0, 0]]

-Testing-

We developed a series of test cases for verification of the spherical voxel
traversal algorithm described above. Two testing methodologies were included: an
enumeration of the voxels traversed and a test on the chord length traversed by the ray.
Enumeration test cases enabled verification of the behavior of the algorithm on edge
cases; these tests also ensured the functionality of the algorithm on a relatively small
grid (i.e. a small number of radial, azimuthal, and polar sections relative to the maximum
spherical shell). However, for larger grids (i.e. a large number of radial, azimuthal, and
polar sections relative to the maximum spherical shell), it is impossible to enumerate by
hand all expected voxels traversed in the grid.

Due to the large number of floating point operations used in the spherical
traversal, verification on large grids with small voxels is an important task. To verify
algorithm behavior on larger grids, tests on the chord length traversed by the ray were
used. Chord length tests compare the expected time the ray would spend in the grid
given the maximum spherical radius with the actual time it takes the ray to traverse from
voxel to voxel. For all test cases developed, even on large grids, the relative difference
between the expected and actual time for ray traversal was on the order of machine
epsilon.

Below, we provide a sample test case that was used in our test suite with step-by-step
traversal to show the expected behavior of the algorithm.

Test: The ray begins outside of the maximum radial shell and travels through the
sphere center. The test parameters are as follows:

ray_origin = [-15.0, 15.0, 15.0];

ray_direction = [1.0, -1.0, -1.0];

sphere_center = [0.0, 0.0, 0.0];

sphere_max_radius = 10.0;

num_radial_sections = 4;

num_angular_sections = 4;

num_azimuthal_sections = 4;

t_begin = 0.01;

t_end = 30.0;

Figure 4: (Left) The azimuthal and radial voxel boundaries for the test sample.
(Right) The polar and radial voxel boundaries for the test sample.

Initialization phase: The algorithm determines that the ray intersects with the spherical
volume. Since the ray at the beginning time is outside the grid, the algorithm continues.

Traversal phase: The ray will traverse in radial voxels 1, 2, 3, 4 while angular and theta
voxels remain the same (voxel 1 for both). When the ray crosses the origin, however,
one can see in Figure 4 that both theta and phi step into voxel 3 while the radial voxel
remains the same. Lastly, the ray will exit through radial voxels 3, 2, 1 while theta and
phi voxels remain the same.

-Benchmarks-

The benchmark results were run on a 2013 MacBook Air (CPU and cache information
listed below) using Google Benchmark. Each benchmark sends rays orthographically
through the sphere, following two criteria: (1) the ray intersects the sphere, and (2) the
ray travels through the entire sphere. Neither parallelization nor concurrency is used. A

scratch paper goal set by the client was 128^2 rays through a 64^3 voxel domain in less
than one second. Currently, the algorithm achieves this in less than 0.3 seconds with
appropriate optimization flags.

-References-
1. Paul S. Heckbert, editor. Graphics Gems IV. Academic Press Professional, Inc., USA,

1994.

