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1 Introduction

Functional programming languages often exhibit inferior
runtime performance compared to their imperative coun-
terparts, which more directly encode the von Neumann ar-
chitecture. A principal culprit is data representation: func-
tional languages typically box values behind pointers, in-
curring indirection that obfuscates compiler analysis and
heap allocation overhead that modern hardware penalizes
severely.

These functional languages can be partitioned into two
camps based on their default representation strategy. Lan-
guages that are boxed-by-default, e.g., Haskell and OCaml,
represent values uniformly as pointers, simplifying polymor-
phism and enabling separate compilation but requiring ex-
plicit mechanisms to recover performance. Languages that
are unboxed-by-default, e.g., Morphic and MLton, represent
values directly, achieving better performance at the cost
of whole-program analysis and restricted polymorphism.
These two camps face fundamentally different constraints
and consequently adopt very different approaches.

We begin by examining two boxed-by-default languages.
First, we discuss Haskell’s approach to introducing unboxed
values as first-class [22], and extensions to this work to re-
duce constraints [7]. Second, we turn to OCaml’s modal
memory management, which employs type qualifiers track-
ing locality, uniqueness, and affinity to enable safe stack allo-
cation and in-place mutation while respecting the language’s
existing design constraints [18]. We then examine Morphic,
an unboxed-by-default language that uses lambda set spe-
cialization to defunctionalize higher-order programs, achiev-
ing the benefits of specialization while maintaining the ex-
pressiveness of first-class functions [3]. Finally, we conclude
by distilling lessons learned from these three approaches into
a desideratum for the ideal, performance-oriented functional
language.

2 The Representation Problem

Boxing values by default simplifies the compilation of func-
tional languages considerably. A uniform representation
means a single calling convention suffices for all functions,
which in turn yields straightforward implementations of

parametric polymorphism and existential types. Separate
compilation becomes tractable because module boundaries
need not expose representation details. Advanced type sys-
tem features such as polymorphic recursion and higher-rank
polymorphism, which can generate infinitely many type in-
stantiations at compile time, remain viable because all in-
stantiations share a unified calling convention.

However, these benefits come at a cost. When every value
is boxed, even simple arithmetic incurs pointer indirection
and heap allocation. To recover performance, boxed-by-
default languages must introduce mechanisms for selective
unboxing. This proves surprisingly burdensome: the very
uniformity that made compilation easy now stands in the
way. Parametric polymorphism, for instance, assumes that
type variables can be instantiated with any type, but now
types may have different bit widths and calling conventions.

Unboxed-by-default languages sidestep these difficulties
by relaxing the constraints that boxed-by-default languages
abide by. They enforce their own requirements:

1. Strict evaluation. While not universal in box-by-
default, lazy evaluation imposes an additional axis of
representation complexity, whereas strict evaluation
permits values to be passed directly.

2. Finite types. Only a finite number of types may exist
at compile time. This rules out polymorphic recursion
and certain uses of higher-rank polymorphism.

3. Whole-program analysis. Separate compilation be-
comes impossible, but the compiler gains visibility into
all type instantiations and can specialize accordingly.

Under these assumptions, compile-time monomorphiza-
tion can essentially guarantee unboxed representations for
all non-recursive types. However, whole-program analysis
demands longer compilation times, increased memory foot-
print during building, and inflated binary sizes [28]. Nev-
ertheless, for performance-critical applications, these costs
are often acceptable [25, 26].

3 First-Class Unboxed Values

Haskell is a non-strict, purely functional language that his-
torically represented all values as boxed and lifted. Non-
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strictness introduces an additional dimension to the rep-
resentation problem: a value of lifted type may be un-
defined (⊥), representing a non-terminating computation.
This leads to the invariant that lifted types must be boxed,
since the runtime must be able to represent a thunk that
has not yet been evaluated. An unlifted type, by contrast,
may be boxed or unboxed.

Peyton Jones and Launchbury [22] introduce unboxed val-
ues as first-class citizens in Haskell, enabling programmers
to opt into unboxed representations where performance de-
mands it. We examine their approach and its evolution into
modern GHC’s treatment of representation polymorphism.

Motivation

Consider the following Haskell function:

f :: Int → Int → Int

f x y = x + (x - y)

For simplicity, we assume that operands are evaluated
left to right, though this is not required since no ordering
is imposed by the non-strict semantics of the language. We
give the following operational interpretation:

1. unbox x (lhs)
2. evaluate x to x’

3. unbox x (rhs)
4. unbox y

5. evaluate y to y’

6. compute r’ = x’ - y’

7. box r’ as u’

8. unbox u’

9. compute r’’ = x’ + u’

10. box r’’

This sequence involves four indirect memory accesses and
a redundant intermediate boxing operation. In a strict lan-
guage with unboxed integers, the same computation would
reduce to two machine instructions.

Unboxing Constraints

Three constraints govern when unboxing is possible in
Haskell. First, since unboxed values cannot represent ⊥,
the compiler must guarantee that an unboxed value is fully
evaluated. This can be established via a strictness analy-
sis or, more recently, through explicit strictness annotations
such as bang patterns (!) and seq.

Second, polymorphic functions cannot directly manipu-
late unboxed values, since different unboxed types may have
different sizes and calling conventions. Three approaches do
exist to overcome this limitation:
1. Runtime tagging : Attach a discriminating tag indicat-

ing the type’s representation, as in the ML family [17].
This requires all types to share a uniform width and
incurs runtime overhead.

2. Monomorphization: Specialize each polymorphic func-
tion for every type instantiation. This conflicts with
Haskell’s support for separate compilation and poly-
morphic recursion.

3. Type passing : Explicitly provide type information at
each call site of a polymorphic function.

Peyton Jones and Launchbury [22] declined all three, in-
stead restricting polymorphic type variables to range only
over boxed types. Finally, recursive types must remain
boxed, since their size cannot be determined statically.

Introducing Unboxed Values

The key insight of Peyton Jones and Launchbury [22] is to
make boxing and unboxing explicit in Haskell’s intermedi-
ate language Core. Evaluation order is encoded via case

expressions: the construct case n of I# n# -> ... forces
evaluation of n and extracts its unboxed contents into n#.
Boxedness is reflected in the type system by distinguish-
ing Int (boxed, lifted) from Int# (unboxed, unlifted). The
motivating example translates to:

case x of Int x’# → case (

case x of Int x’’# →
case y of Int y’# →

case (x’’# -# y’#) of Int r’#

) of Int u’# →
case (x’# +# u’#) of Int r’’#

With boxing and unboxing made explicit, standard com-
piler transformations can eliminate redundant operations.
After applying common subexpression elimination, case-of-
case, and case fusion, the optimized code becomes:

-- 1. eliminate common scrutinisations [4.1]

-- 2. case -of -case transformation [4.2, P1]

-- 3. case -fusion [4.2, P2]

case x of Int x’# →
case y of Int y’# →

case (x’# -# y’#) of r’# →
case (#x’ + #r’) of #r’’ →

Int #r’’

The function still unboxes its arguments and reboxes
the result, since its type signature demands boxed inte-
gers. However, the intermediate boxing has been eliminated.
Finally, changing the signature to Int#→Int#→Int# would
eliminate even the boundary conversions.

Type System Integration

Enforcing the unboxing constraints requires only modest
changes to the type system. The rule for type instantia-
tion restricts polymorphic type variables to boxed types π:

Spec
A ⊢ e : ∀α. σ
A ⊢ e : σ[π/α]
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Function application splits into two rules:

App
A ⊢ e1 : π → τ A ⊢ e2 : π

A ⊢ e1 e2 : τ

App#
A ⊢ e1 : ν → τ A ⊢ h : ν

A ⊢ e1 h : τ

The first handles boxed arguments; the second requires the
argument h to be in head-normal form, ensuring that un-
boxed values are never passed unevaluated. Similar adjust-
ments apply to let and letrec. Together with a syntactic
check rejecting recursive unboxed types, these rules suffice
to ensure well-formedness.

Levity Polymorphism

Unboxed types remain part of modern Haskell, but the origi-
nal restrictions proved overly draconian. Eisenberg and Pey-
ton Jones [7] introduced levity polymorphism, allowing lim-
ited polymorphism over representations. The key observa-
tion is that some functions genuinely do not care about rep-
resentation: they never move or store their representation-
polymorphic arguments in ways that depend on layout.

The kind system tracks representation via the
TYPE constructor, e.g., Int :: TYPE LiftedRep and
Int# :: TYPE IntRep. Here, we say that Int has a lifted
representation, while Int# has an integer representation. A
function can then abstract over representation:

($) :: ∀
(r :: Rep)

(a :: TYPE LiftedRep)

(b :: TYPE r). (a → b) → a → b

f ($) x = f x

Here the return type b is representation-polymorphic, but
the input a must be lifted. This is well-formed because
the function merely returns b without storing or binding it
(assuming tail call optimization). Conversely, the following
program is rejected:

id :: ∀ (r :: Rep) (a :: TYPE r). a → a

id x = x

The calling conventions would require knowing the repre-
sentation of a to allocate appropriate storage on the stack.
The restriction is precisely characterized: a function may
be representation-polymorphic only if its representation-
polymorphic variables appear in positions where the gen-
erated code is independent of layout. This remains quite
restrictive, but it carves out useful territory that the origi-
nal work forbade entirely.

Beyond Compile-Time Monomorphization

An alternative approach, exemplified by C#/.NET, defers
monomorphization to runtime via a JIT compiler [13]. This

enables unrestricted polymorphism: even types unknown
at compile time (due to separate compilation or first-class
polymorphism) can be specialized on demand. The cost is
carrying type information at runtime, but the expressive-
ness gain is substantial. For languages unwilling to sacrifice
separate compilation or non-standard typing features, run-
time specialization may be the only path to full unboxing.

4 Modal Memory Management

OCaml is a strict, call-by-value language supporting both
functional and imperative paradigms. Like Haskell, it per-
mits infinitely many types at compile time and supports sep-
arate compilation, precluding wholesale monomorphization.
OCaml does support unboxed types through a layout system
similar in spirit to Haskell’s levity polymorphism, albeit less
general1: a hierarchy of sub-layouts patches specific unbox-
ing cases rather than providing a unified treatment [5, 20].
A subset of this hierarchy appears below:

any

value

immediate
ints, foreign ptrs

all legacy types

float
unboxed floats

L1 ∗ L2
unboxed records,

tuples

bits
non-GC words

The root any represents layouts unknown at compile time;
code operating at this layout is rejected, since the compiler
cannot generate appropriate instructions without knowing
the representation. Below it, the hierarchy branches into
value and several unboxed layouts. The value layout en-
compasses all types safe for garbage collection: pointers to
heap-allocated data and immediates, which are 63-bit in-
tegers distinguished from pointers by a low tag bit. The
garbage collector inspects this bit to avoid following imme-
diates as if they were pointers. Unboxed layouts such as
float64 and bits64 fall outside value and require careful
handling: an unboxed float, for instance, might coinciden-
tally resemble a valid pointer, so the collector must never
encounter it in a context expecting a value. The distinction
between floating-point and bit layouts reflects architectural
constraints, since some processors mandate different regis-
ters for each.

Given the lack of white papers available on unboxed types,
we focus instead on a complementary approach: OCaml’s
modal type system, which reduces heap allocations by track-
ing properties of values that enable stack allocation and in-
place mutation [18].

1Remarkably, the original RFC [20] points out that storing two
32-bit integers (typically 8B) in a record resulted in 80B of overhead.
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Motivation

Idiomatic functional programming incurs heap allocations
that imperative code would avoid. Consider a function that
shifts the color of each pixel in a list:

type Number { int , int }

let shift_color offset pixels =

List.map (fun {r; g; b} → Color.clamp {

r = r + offset.r;

g = g + offset.g;

b = b + offset.b;

}) pixels

Three sources of allocation lurk here: each new Color

record, the spine of the result list, and the closure capturing
offset. This can be fixed by using the imperative paradigms
of OCaml, but the goal of modal memory management [18]
is to recover efficiency without abandoning functional style
code.

The approach introduces three modes as type qualifiers:
locality, uniqueness, and affinity. Each mode forms a lattice
with subtyping, and together they enable the compiler to
prove that certain values can be stack-allocated or updated
in place. The benefits closely resemble those of unboxing.

Locality

Locality governs the lexical region in which a value may
be referenced, and thereby determines whether it can be
stack-allocated. A value qualified as @local is guaranteed
not to escape its enclosing region, thus the compiler may
place it on the stack. A value qualified as @global may
be referenced anywhere and must be heap-allocated. The
subtyping relation global <: local holds: a global value
can always be used where a local one is expected, but not
vice versa. Locality is a deep property: if a value is local,
so are all its constituents.

A third mode, introduced by the keyword exclave, per-
mits values to escape their immediate region when in tail
position. This reconciles stack allocation with tail-call op-
timization: without it, a tail-recursive function returning a
locally-allocated value would be forced to copy that value
to the heap before returning.

This design echoes region-based memory management as
in Cyclone [8], though with less generality. Cyclone supports
arbitrarily nested regions with explicit lifetime parameters.
OCaml offers only the binary distinction between local and
global with a special case for tail recursion.

Uniqueness

Uniqueness tracks whether a value has at most one ref-
erence pointing to it, enabling safe in-place mutation.
A value qualified as @unique is guaranteed to have no

aliases; the compiler may overwrite it without copying. A
value qualified as @aliased may have multiple references
and must be treated immutably. The subtyping relation
unique <: aliased holds, and uniqueness is deep.

Children may override their parent’s uniqueness: the
spine of a list might be unique while its elements are aliased.
The converse is forbidden: an aliased container cannot guar-
antee unique elements, since multiple paths to the container
imply multiple paths to its contents.

OCaml permits conditional ownership, where a value’s
fate depends on runtime control flow:

val consume : ’a @ unique → unit

val observe : ’a @ aliased → unit

let f v b = if b

then consume v

else (observe v; observe v)

Here v is either consumed uniquely or aliased twice, de-
pending on b. This flexibility stems from OCaml’s garbage
collector, which handles deallocation regardless of owner-
ship. In a language with explicit memory management like
Rust, such a program would be ill-formed: ownership, a lin-
ear property, must be statically determined to know when
to free.

Affinity

Affinity constrains how many times a value may be used
in the future. A value qualified as @many may be used ar-
bitrarily often, while one qualified as @once may be used at
most once. The subtyping relation many <: once holds. This
mode prevents accidental aliasing of unique values through
closures:

let xs @ unique : int list = [1;2;3] in

let f = fun v → v :: xs in

let ys = f 4 in

let zs = f 5 (* error if f is marked @once *)

Without an affinity constraint, calling f twice creates two
references to the unique list xs. Marking the closure as @once
catches the error statically.

Uniqueness versus Linearity

A brief digression on semantics: uniqueness and linearity
are often conflated, but they differ in subtle ways when un-
restricted values coexist in the system [19]. Both restrict
contraction (prohibiting duplication), but they make guar-
antees in opposite temporal directions. Uniqueness asserts
something about the past: no other references to this value
currently exist. Linearity asserts something about the fu-
ture: this value will be consumed exactly once.

The distinction manifests in what weakenings are permit-
ted. A unique value can be weakened to an aliased value
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(we simply forget the uniqueness guarantee), but a linear
value cannot be weakened to an unrestricted one (doing so
would permit the value to go unconsumed). Conversely, an
unrestricted value can be strengthened to a linear one (we
promise to consume it), but not to a unique one (we cannot
retroactively guarantee no aliases exist).

OCaml’s design reflects this: uniqueness and affinity are
orthogonal modes, and their combination handles cases that
either alone would misclassify. Modes form a lattice over
three axes (affinity, uniqueness, locality), and closures re-
quire a dagger operation to mediate between them:

once† := unique many† := aliased

The dagger connects affinity (how many times a closure may
be invoked) to uniqueness (how many references exist to a
value): a closure callable many times will access its captures
many times, effectively aliasing them.

This reasoning is formalized in the lock judgment Γ, ⟨µ⟩,
which transforms a context Γ when variables are captured
by a closure of mode µ = (a, u, l). For each captured binding
x : τ @ (a′, u′, l′), the lock coerces uniqueness to u′ ∨ a†. If
the closure has affinity many, then a† = aliased, forcing any
captured variable to become aliased regardless of its original
uniqueness.

Mode Inference and Polymorphism

The compiler infers modes via constraint solving, defaulting
to the legacy triple (many, aliased, global) when annota-
tions are absent. This ensures backward compatibility, i.e.,
unannotated code behaves as before. Programmers may opt
into stricter modes where performance demands, and the
type system guarantees these modes are well-formed.

True mode polymorphism remains future work. The cur-
rent workaround is a template mechanism that generates
multiple monomorphic copies [21]:

let%template[@mode m = (global , local)]

id : ’a. ’a @ m → ’a @ m = fun x → x

This expands to two definitions, one for each mode in
the list. The approach is ad hoc but pragmatic, providing
mode-polymorphic behavior.

Impact

The empirical results, while narrow in scope, demonstrate
the potential. In a benchmark saturating the garbage collec-
tor, modal management yielded a 9% runtime improvement.
The implementation effort is substantial, and remained in-
complete at the time of publication. Mode polymorphism,
which the authors identify as critical for practical adoption,
was deferred to future work. Moreover, 85 functions in their
codebase were duplicated across different locality modes, a
direct consequence of this limitation. In general, the system

achieves its goals, but the interaction of three mode axes,
partial context joins, dagger-mediated locks, and a nine-
element semiring with coaliased grades represents a consid-
erable departure from Hindley-Milner.

5 Lambda Set Specialization

Morphic [3] takes the opposite stance from Haskell and
OCaml: rather than boxing by default and selectively un-
boxing, it strictly unboxes everything except recursive data
types. This is feasible because Morphic accepts the con-
straints outlined in Section 2, namely strict evaluation, a
finite number of types at compile time, and whole-program
analysis. The result is a language where the default repre-
sentation matches that of imperative languages.

A challenge for any unboxed-by-default language is
higher-order functions, a key ingredient in a functional lan-
guage. A closure is traditionally represented as a pointer
to a heap-allocated structure containing the function code
and its captured environment. Morphic eliminates this in-
direction through defunctionalization [23], a transformation
that converts higher-order programs into first-order ones.
The novelty of Morphic lies in lambda set specialization,
which combines defunctionalization with specialization to
avoid the performance degradation that naive defunctional-
ization would introduce.

Defunctionalization

Consider a higher-order function that applies its argument
twice:

twice(f: Int → Int , x: Int): Int = f(f(x))

let add: Int → Int = \x → x + 2 in

let mul: Int → Int = \x → x * 2 in

(twice(add , 5), twice(mul , 3))

Classical monovariant defunctionalization replaces func-
tion values with tags and introduces a dispatch function:

type AddOrMul { ’add | ’mul }

twice(tag: AddOrMul , x: Int): Int =

match tag {

’add → (x + 2) + 2,

’mul → (x * 2) * 2,

}

(twice(’add , 5), twice(’mul , 5))

The program is now first-order, but we have introduced
a runtime dispatch that the original code did not require.
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Each call site of twice passes a statically known function,
yet the defunctionalized version must branch on the tag.
Specialization recovers the lost efficiency:

twiceadd (x: Int): Int = (x + 2) + 2

twicemul (x: Int): Int = (x * 2) * 2

(twiceadd (5), twicemul (3))

This is exactly what a monomorphizing compiler like
C++ would produce. Now, consider a variant where the
closure is chosen at runtime:

let add: Int → Int = \x → x + 2 in

let mul: Int → Int = \x → x * 2 in

let f: Int → Int =

if b { add } else { mul } in

twice(f, 5)

Here specialization is impossible: f could be either add or
mul, so the dispatch is genuinely needed. The challenge is
to specialize where possible and fall back to dispatch only
where necessary.

Lambda Set Annotations

Morphic’s solution is to track, at the type level, which lamb-
das a function value might contain. Each function type car-
ries a lambda set annotation denoting the set of possible
closures:

twice⟨α⟩(f: Int
α−→ Int , x: Int): Int

= (f as α)((f as α)(x))

let add: Int
{λx→x+2}−−−−−−−→ Int = \x → x + 2 in

let mul: Int
{λx→x∗2}−−−−−−−→ Int = \x → x * 2 in

(

twice⟨{λx→ x+ 2}⟩(add , 5),

twice⟨{λx→ x ∗ 2}⟩(mul , 3)

)

The function twice is now polymorphic over lambda sets
via the parameter α. At each call site, α is instantiated with
a concrete set. When that set is a singleton, the compiler
specializes: no dispatch is needed. When the set contains
multiple lambdas, as in the runtime-conditional example,
the compiler generates a sum type and dispatch code:

let f: Int
{λx→x+2,λx→x∗2}−−−−−−−−−−−−−→ Int =

if b { add } else { mul } in

twice⟨{λx→ x+ 2, λx→ x ∗ 2}⟩(f, 5)

Crucially, even in this case the closure and its environ-
ment remain unboxed; only the control flow requires a run-
time decision and the decision is local. This approach gen-
eralizes naturally. Lambda set annotations flow through the
program via type inference, and monomorphization instan-
tiates each polymorphic definition at every lambda set it is
used with. The result is specialization wherever the anal-
ysis can prove it safe, with dispatch reserved for genuinely
dynamic cases.

An interesting observation made by Brandon et al. [3] is
that the unit of specialization should be strongly connected
components (SCC) rather than individual functions. Type
inference requires that the definition dependency graph ad-
mit a topological ordering, since inferring the type of a def-
inition depends on the signatures of its dependencies. Mu-
tual recursion violates this requirement by introducing cy-
cles. The solution is to collapse each SCC into a single
definition, with each mutually recursive function becoming
a let-bound lambda in that definition’s body. This restores
the necessary topological structure while allowing the spe-
cialization machinery to proceed unchanged.

Evaluation

Lambda set specialization yields substantial improvements
over monovariant defunctionalization. Compared to MLton,
another unboxed-by-default compiler that defunctionalizes
without specializing, Morphic achieves speedups ranging
from 0.91× to 6.85× across benchmarks. Binary sizes some-
times decrease despite the additional specialization: when
specialized functions are small enough to inline, LLVM elim-
inates the original function entirely. If there exists only a
single call, this results in a smaller binary.

The Cost of Uniformity

Unboxed-by-default languages sacrifice representation
choice. In Morphic, everything is unboxed except recursive
types and the built-in Array type. This uniformity can be
suboptimal. Consider mutually recursive types:

type Even { Even(Int , Odd) }

type Odd { Odd(Int , Even) }

Morphic boxes both Even and Odd to break the cycle, but
only one indirection is necessary for finite representation. A
smarter analysis could box only one, but even this choice can
be difficult to make optimally. More significantly, boxing
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sometimes improves performance. Consider an AST with
debugging metadata:

type Span { Span(Int , Array Byte , ...) }

type Expr {

Const(Int , Span),

Var(Int , Span),

Add(Expr , Expr , Span),

...

}

If Span is rarely accessed, inlining it into every node de-
grades cache locality. Boxing Span would keep the hot fields
local. This is standard practice in optimizing compilers [15],
but Morphic cannot express it. Conversely, MLton can ex-
press this, but doesn’t always guarantee unboxing where
one might expect it. For example, it will box a pair of
fixed-precision integers (r1, r2) if r1 and r2 are not stati-
cally known values. In general, determining where a value
will live in MLton is up to the compiler, thus the choice is
still illusive. We provide concrete examples of this in Ap-
pendix A.

Boxing also enables sharing. The classic example is string
interning, where identical strings share a single allocation.
Morphic supports this for string literals but cannot gen-
eralize to user-defined types. Unboxing is not universally
beneficial. The optimal representation depends on access
patterns, data sizes, and cache behavior. A language that
forces a single choice foregoes optimizations that require the
other. To motivate these claims, we provide empirical evi-
dence in Appendix B.

6 Toward Parity Performance

We have surveyed three approaches to improving the per-
formance of functional languages: Haskell’s first-class un-
boxed types with levity polymorphism, OCaml’s modal
memory management, and Morphic’s lambda set special-
ization. Each makes different tradeoffs between language
expressiveness and performance. We now ask, what would
a functional language designed primarily for runtime per-
formance look like?

The Case for Unboxing by Default

From a purely performance-oriented perspective, the Mor-
phic approach is the most promising path toward parity with
imperative languages. Several observations support this
claim. First, strict evaluation is essential. Non-strictness
introduces an unavoidable level of indirection: every value
must be represented as a thunk that may or may not have
been evaluated. Haskell programmers routinely annotate
their code with bang patterns, seq, and strictness pragmas

to recover the performance that strictness would have pro-
vided by default [12]. Therefore, a language prioritizing
runtime performance should be strict.

A(nother) brief digression: Lennart Augustsson has a
blog post defending the merits of non-strictness in a
functional programming language [1]. This was in re-
sponse to Bob Harper griping about laziness; both con-
tain entertaining perspectives. His biggest complaint
was the lack of function reuse in strict languages. Con-
sider the following example:

any :: (a → Bool) → [a] → Bool

any p xs = or . map p xs

In a strict language, this call will first scan the list en-
tirely with map, then perform the outer reduction using
or. Thus, to perform the optimal choice, i.e., exit early,
it must be rewritten entirely:

any p [] = False

any p (x:xs) = x || any p xs

Perhaps one solution to this inconvenience is recent
work on mechanizing such transformations in the more
general case of trees [24]. Specifically, or is associa-
tive and has an annihilator, thus a compiler can (and
should) infer it is possible to exit early.

Second, monomorphization eliminates the overhead of
uniform representation. When the compiler specializes each
polymorphic function for its concrete type instantiations, it
can use the natural machine representation for each type:
integers in registers, floats in vector units, structs laid out
contiguously. The cost is compile time and binary size, but
these are acceptable tradeoffs for performance-critical ap-
plications.

Third, defunctionalization with specialization, as in Mor-
phic’s lambda set specialization approach, eliminates the
overhead of closures. Higher-order functions compile to
first-order code with static dispatch wherever possible, and
to unboxed sum types with minimal dispatch overhead
where runtime choice is unavoidable.

Together, these yield code that a C programmer would
recognize: values stored directly, functions called without
indirection, and fewer hidden allocations. This is the base-
line from which a performance-oriented functional language
should start.

The Need for Choice in Data Representation

Yet, Morphic’s uniformity is also its limitation. In unbox-
ing everything by default, it foregoes optimizations that re-
quire boxing. As we state in Section 5, there are scenarios
where boxing yields better performance, e.g., cold metadata
that degrades cache locality when inlined, shared immutable
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structures that reduce memory usage, and mutually recur-
sive types that require fewer indirections than Morphic’s
conservative analysis provides.

This observation is not novel. Past work on efficient func-
tional programming language compilation noted that ag-
gressive unboxing can be counterproductive, e.g., when reg-
ister spilling is excessive [16, 17]. The tradeoff depends on
how values flow through the program, a property that varies
with the algorithm and input data.

The takeaway is that no single representation policy is
universally optimal. The choice of data representation de-
pends on characteristics of the input data, the algorithm,
and the underlying architecture [9]. A language that forces
uniformity, whether boxing everything or unboxing every-
thing, will be suboptimal for some evaluation context. What
we need is not a different default, but the ability to choose.

Representation Parametricity

Before continuing, we must clarify what it means for code
to be independent of representation. The term represen-
tation polymorphism conflates two distinct notions. In the
Haskell literature [6, 7], representation polymorphism is an
operational2 guarantee: a single compiled function works
correctly across multiple representations at runtime. The
type system verifies that representation-polymorphic code
performs no operations requiring knowledge of layout, en-
suring that one piece of machine code suffices for all instan-
tiations. This is a strong property, but it is also extremely
restrictive, i.e., many useful functions cannot satisfy it.

In monomorphizing languages, this operational goal is
abandoned by design. Every polymorphic function is com-
piled once per instantiation and as a result no code sharing
occurs. Therefore, only a denotational semantics remains
meaningful. Following Wadler’s characterization of para-
metric polymorphism as information hiding [27], we can
define representation parametricity as the guarantee that
source code cannot observe representation. A function is
representation-parametric if its semantics is identical re-
gardless of how its arguments are laid out in memory or
derived. This semantic definition is the one that matters
for optimization. If the algorithm written in the core lan-
guage cannot observe representation, then the compiler or
performance engineer is free to choose any layout that pre-
serves semantics.

Fortunately, representation-parametric code is natural in
functional languages. Pure functional programs operate on
values, not locations, e.g., providing immutable bindings
rather than mutable cells and algebraic data types rather
than pointers. The operations that violate representation
parametricity are precisely the operations that functional

2I may be perverting the terms operational and denotational here.
However, I have not seen anyone else make this distinction before so
was compelled to choose my own nomenclature.

languages typically omit. Imperative code is necessarily
steeped in explicit data representation choices; functional
code often, by default, is not.

Separating Algorithm from Representation

This observation suggests a design principle. Namely, if
functional code is naturally representation-parametric, then
representation choices can be made separately from algo-
rithmic logic. This separation echoes an early insight of
Hoare’s: recursive data structures should be understood
abstractly, independent of their concrete representation in
memory [11]. Namely, programs should only analyze such
structures through case analysis and recursion. Conse-
quently, the algorithm describes what to compute over in-
ductively defined structure; the representation describes
how that structure is represented.

The precedent for such separation exists in other domains.
For example, Legion separates logical data regions from
physical layouts [2] in distributed computing and achieves
performance competitive with hand-tuned code while pre-
serving high-level abstractions. We propose an analogous
separation for data structures in functional languages, where
semantics-preserving layout transformations are specified
independent of the algorithm. The source program remains
representation-parametric; the compiler exploits this free-
dom.

Notably, this principle of data independence is well-
established in domain-specific languages [4, 9, 14], but has
yet to permeate general-purpose functional languages. Con-
sider the following example, where an algorithm is written
in the core language and a separate “data representation
specification” is provided:

type Span {

Span (

source_begin : Int , source_end : Int ,

file : String , module : String ,

)

}

type Expr {

Const(Int , Span),

Var(String , Span),

Add(Expr , Expr , Span),

}

simplify : Expr → Expr

simplify expr = ...

layout Expr(

Const(_, s), Var(_, s), Add(_, _, s)

) ← apply Box(s)

8



The schedule specifies that Span fields within Expr should
be boxed, improving cache locality for passes that traverse
expressions without inspecting spans. The algorithm is un-
changed; only the physical layout differs. More ambitious
transformations should be expressible in the same frame-
work:

type Point {

Point(x: Float , y: Float , z: Float)

}

type Points { Points(Array Point) }

f(ps: Points) → Bool

f ps = ...

layout Points(

Array Point(x,y,z)

) ← split (x,y,z)

// Points(

// Array x:Float ,

// Array y:Float ,

// Array z:Float

// )

This schedule transforms an array of points into three
separate arrays of coordinates, improving vectorization for
algorithms that access fields independently. This is a
semantics-preserving transformation that current functional
languages either cannot express without changing the core
language or always provide by default [10] thus again elim-
inates choice. We assume the compiler will generate the
necessary memory offsets, e.g., p[i].x to p.x[i].

Recursive algebraic data types present another fundamen-
tal representational challenge that all functional languages
must confront. Unlike primitive values or simple records,
a recursive type such as a linked list or binary tree cannot
be fully unboxed: doing so would require infinite space at
compile time. Consequently, every language we have sur-
veyed mandates that at least one component within any
recursive cycle be boxed [3, 22]. This constraint foregoes
a suite of optimizations that imperative languages exploit
with impunity. Consider the canonical example of a list:

type List a { Nil , Cons(a, List a) }

In Haskell, OCaml, and Morphic alike, the recursive refer-
ence to List a within the Cons constructor is represented as
a pointer to heap-allocated memory. Each node lives at an
arbitrary address determined by the allocator, and traversal
requires chasing pointers across potentially disparate mem-
ory regions. The performance implications are twofold: in-

direction latency and cache locality degradation. Imper-
ative languages, by contrast, routinely circumvent these
penalties through techniques that exploit a crucial observa-
tion: at runtime, recursive data structures are often finitely
bounded. By allocating nodes contiguously in some arena,
64-bit pointers may be replaced by more compact indices.
Moreover some offsets can be inferred from structural infor-
mation and thus require no additional space, e.g., a child
placed directly next to their parent in memory. Both of
these data representation optimizations are demonstrated
in Appendix B.

When no schedule is provided, the compiler applies sen-
sible defaults: unboxed for non-recursive types, boxed for
recursive types, standard discriminated unions for sum
types. Programmers opt into more sophisticated layouts
only where justified. Finally this provides an additional
benefit, namely the algorithm must only be defined once.
This is crucial for optimizing an algorithm for a particular
evaluation context, where data characteristics and architec-
tural limitations will influence the choice of layout.

Externalizing Compilation

Representation is not the only axis where uniformity may
be suboptimal. Compilation strategy itself admits choice.
Monomorphization yields the fastest code, but at the cost
of compilation time and binary size. For some functions, the
cost may exceed the benefit. A library function instantiated
at dozens of types might unacceptably bloat the binary, es-
pecially when it lies on a cold path. Moreover, optimizing
compilers are expensive, and whole-program analysis doubly
so. The Pareto principle applies; in some cases, a small frac-
tion of code dominates runtime. The programmer, equipped
with domain knowledge and profiling tools, can demarcate
these hot regions more precisely. Expensive analyses should
focus there, while cold code compiles with cheaper strate-
gies.

Just as Haskell and OCaml allow selective specialization
within a boxed-by-default world, a monomorphizing lan-
guage could allow selective uniformity. The compiler could
default to specialization but accept annotations indicating
where shared code is acceptable, or where whole-program
visibility is unnecessary. The broader principle is that com-
pilation strategy, like representation, should be under pro-
grammer control. Externalizing the compiler exposes the
decisions that affect performance as first-class configuration,
rather than burying them in heuristics that cannot antici-
pate every evaluation context. The specification of data
representation, discussed above, is one particularly conse-
quential form of this externalization.
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Toward Performant Functional Languages

The preceding discussion suggests design principles for a
functional language oriented toward runtime performance
parity with imperative code. Many questions remain open:

• What is the specification language for data representa-
tion transformations? In domain-specific languages, a
restricted domain delimits the space of valid (and use-
ful) transformations, e.g., The Tensor Algebra Com-
piler operates over tensors, and SQL over relations. A
general-purpose functional language, however, enjoys
no such luxury. User-defined algebraic data types can
encode arbitrary structure. Too restrictive, and the
language isn’t very useful; too expressive, and Rice’s
theorem foregoes any hope of guaranteeing semantic
preservation.

• How should memory management interact with repre-
sentation choice? Certain layout transformations as-
sume particular allocation disciplines. Unboxing recur-
sive structures into contiguous arenas, for instance, re-
quires lifetimes amenable to bulk deallocation. A co-
herent design must ensure that representation specifica-
tions compose with the memory management strategy
rather than conflicting with it.

• Where should the boundary lie between compiler in-
ference and programmer control? Ideally, a gradual
workflow exists: naive code compiles with sensible
defaults, and the programmer introduces algorithm-
agnostic representation optimizations as performance
demands arise.

While essential, these design principles do not exhaust the
performance-critical aspects of functional language design,
e.g., garbage collection strategies. Nevertheless, we contend
that a language adhering to these principles would repre-
sent meaningful progress toward closing the performance
gap between functional and imperative code, and, more im-
portantly, doing so without forfeiting the abstractions that
make functional programming worthwhile.
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Appendix

A MLton

While playing with larger programs in MLton v20241230, we
encountered several mystifying allocation decisions that af-
fected performance. We distill these into the minimal cases
presented below:

structure Main = struct

val seed = case CommandLine.arguments () of

[] => 42

| s::_ => getOpt (Int.fromString s, 42)

fun mkVal i = seed + i

fun check name v =

let

(* heap bytes allocated *)

val size = MLton.size v

val loc = if size > 0

then "heap -allocated"

else "stack -allocated"

in

print (name ^ " : " ^ loc ^ "\n")

end

val () = check "1" (mkVal 1)

val () = check "2" (ref (mkVal 2))

val () = check "3" (ref (ref (mkVal 3)))

val () = check "4" (hd [ref (mkVal 4)])

val L = Array.fromList [ref (mkVal 5)]

val () = check "5" (Array.sub (L, 0))

(* single -element tuple [1] *)

type ’a one = {1 : ’a}

val () = check "6" {1 = mkVal 6}

(* multi -element tuple *)

val () = check "7" (7, 77)

val () = check "8" (mkVal 8, mkVal 88)

end

(*

(mkVal 1) : stack -allocated

(ref (mkVal 2)) : heap -allocated

(ref (ref (mkVal 3))) : stack -allocated

hd [ref (mkVal 4)] : stack -allocated

Array.sub (L, 0) : heap -allocated

{1 = mkVal 5} : stack -allocated

(6, 66) : heap -allocated

(mkVal 7, mkVal 77) : heap -allocated

*)

MLton provides a builtin MLton.size that reports, at run-
time, the number of bytes a value occupies on the heap. A
single ref is heap-allocated, yet a ref of ref resides on the
stack. More vexing still is the tuple (mkVal 8, mkVal 88):
two runtime-computed values that MLton heap-allocates,
though Morphic places the equivalent structure on the stack.
The behavior of (7, 77) exhibits a curious non-locality: re-
moving (mkVal 8, mkVal 88) causes this tuple to become
stack-allocated. We contacted the MLton mailing list seek-
ing clarification; a response is pending. Regardless of the
underlying rationale, this illustrates a broader frustration
for performance-conscious programmers: the illusion of con-
trol, where seemingly equivalent code yields dramatically
different runtime behavior depending on opaque compiler
heuristics.

B Morphic

To provide a twinkle of justification for better program-
mer control over data representation, we present empiri-
cal evidence that the unbox everything philosophy adopted
by Morphic [3] is not universally optimal. Further, the
choice between boxed and unboxed representations, or be-
tween array-of-structs and struct-of-arrays layouts, can yield
order-of-magnitude performance differences depending on
access patterns. Many of these optimizations, commonplace
in production compilers [15], remain largely inaccessible to
functional programmers without greatly obfuscating the al-
gorithm.

To evaluate each representation, we implement a straight-
forward recursive evaluator over the syntax tree. For the
inline and outline representations, the implementation fol-
lows the natural pattern-matching style endemic to func-
tional programming. The flat representation, by contrast,
abandons the elegance of structural recursion for the sake
of cache locality. The implementation of the algorithm for
both algebraic data types (inline and outline) and flattened
arenas are found in Appendix C.

Data Representation

Inline (Unboxed). This is the Morphic default: all fields
are stored contiguously within the parent node. Recursive
children are necessarily behind pointers, but metadata such
as source spans are inlined directly into each constructor.
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// Unboxed

type Span {

Span(

Int , Int ,

Int , Int ,

Int , Int ,

Int , Int ,

Array Byte , Array Byte

)

}

type Expr {

Const(Int , Span),

Var(Int , Span),

Add(Expr , Expr , Span),

Mul(Expr , Expr , Span),

If(Expr , Expr , Expr , Span),

Let(Expr , Expr , Span),

}

Outline (Boxed). Here we box the infrequently-accessed
Span metadata. Since Morphic provides no mechanism for
explicit boxing, we simulate it by wrapping Span in a length-
one Array Span, which the compiler represents as two 64-bit
integers and a pointer3. Any native boxing support would
likely improve upon these numbers, making our results a
conservative lower bound on the benefits of boxing.

type _Span {

_Span(

Int , Int ,

Int , Int ,

Int , Int ,

Int , Int ,

Array Byte , Array Byte ,

)

}

// "Boxed" with Array of size 1.

type Span { Span(Array _Span) }

type Expr {

Const(Int , Span),

Var(Int , Span),

Add(Expr , Expr , Span),

Mul(Expr , Expr , Span),

If(Expr , Expr , Expr , Span),

Let(Expr , Expr , Span),

}

Flat (Arena). We store all expression nodes in contigu-
ous memory following a struct-of-arrays (SoA) layout. This

3We also experimented with encoding boxing via Span augmented
with a self-referential field; this approach performed strictly worse.

representation segregates expressions from spans. Children
of a node are stored immediately after their parent, eliminat-
ing the need for explicit child indices (all expressions have
a statically known number of children). While semantically
equivalent to the algebraic formulation, this representation
demands intrusive change to the algorithm.

tag_const: Int = 0

tag_var: Int = 1

tag_add: Int = 2

tag_mul: Int = 3

tag_if: Int = 4

tag_let: Int = 5

type Span {

Span(

Int , Int ,

Int , Int ,

Int , Int ,

Int , Int ,

Array Byte , Array Byte

)

}

type ExprArena {

ExprArena(Array Int , Array Span)

}

get_tag(arena: ExprArena , idx: Int): Int =

let ExprArena(data , _) = arena in

Array.get(data , idx)

get_field(

arena: ExprArena , idx: Int , offset: Int

): Int =

let ExprArena(data , _) = arena in

Array.get(data , idx + offset)

get_span(

arena: ExprArena , idx: Int , offset: Int

): Int =

let ExprArena(_, spans) = arena in

Array.get(spans , idx + offset)

Methodology & Results

We measure end-to-end performance on a MacBook Pro
with an M2 Pro processor and 16GB of unified memory.
We use Morphic 3cc45ab and Clang 16.0.6. Each bench-
mark begins with a cold run followed by five timed runs. We
discard the minimum and maximum and report the mean
of the remaining three.

Figure B presents the results (higher is better). The in-
line (unboxed) representation, i.e., Morphic’s default, serves
as the baseline. The outline (boxed) representation achieves
speedups ranging from 4.53× at 400 expressions to 9.33× at
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1600 expressions. The flat representation performs similarly,
reaching 10.69× at 3200 expressions. These gains stem from
improved cache locality: by boxing the cold Span metadata,
the hot expression structure becomes more compact, reduc-
ing cache misses during traversal. Moreover, the flattened
version uses less data per node (due to implicit indexes),
further improving cache locality. Clearly, this benchmark
favors contiguous representations; one could just as easily
conjure an example where boxing performs better. This is
precisely the point of our argument: no single data rep-
resentation is optimal across the Cartesian product of al-
gorithms, data characteristics, and machine architectures.
Rather than committing to a fixed choice, languages should
enable systematic exploration of this space.

C AST Evaluation Algorithm

eval(e: Expr , env: Array Int): Int =

match e {

Const(n, _) -> n,

Var(i, _) ->

Array.get(env , i),

Add(a, b, _) ->

eval(a, env) + eval(b, env),

Mul(a, b, _) ->

eval(a, env) * eval(b, env),

If(c, t, f, _) ->

if eval(c, env) = 0 {

eval(f, env)

} else {

eval(t, env)

},

Let(binding , body , _) ->

let v = eval(binding , env) in

eval(body , Array.push(env , v)),

}

eval(

arena: ExprArena ,

idx: Int ,

env: Array Int

) : Int =

let tag =

get_tag(arena , idx)

in

if tag = tag_const {

get_field(arena , idx , 1)

} else if tag = tag_var {

Array.get(

env ,

get_field(arena , idx , 1)

)

} else if tag = tag_add {

eval(

arena ,

get_field(arena , idx , 1), env

) +

eval(

arena ,

get_field(arena , idx , 2), env

)

} else if tag = tag_mul {

eval(

arena ,

get_field(arena , idx , 1), env

) *

eval(

arena ,

get_field(arena , idx , 2), env

)

} else if tag = tag_if {

let c =

get_field(arena , idx , 1) in

let t =

get_field(arena , idx , 2) in

let f =

get_field(arena , idx , 3) in

if eval(arena , c, env) = 0 {

eval(arena , f, env)

} else {

eval(arena , t, env)

}

} else {

let b =

get_field(arena , idx , 1) in

let body =

get_field(arena , idx , 2) in

eval(

arena ,

body ,

Array.push(

env , eval(arena , b, env)

)

)

}
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